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Abstract

We introduce a compression technique for small polygons. The main application is to
embed compressed polygons in emergency alert messages that have strict length restrictions,
as in the case of Wireless Emergency Alert messages. We transform polygon coordinates
to sets of integers and are able to compress them to between 10.4% and 25.6% of original
length reducing original polygon lengths from 43-331 characters to 9-61 characters. The
compression technique introduced in this work takes advantage of a strongly skewed polygon
coordinate distribution. We also show that our technique is similar to and at times better
than prior published state of the art integer compression techniques in terms of bits per
integer.

1 Introduction

Geo-targeting is widely used on the Internet to improve user targeting with advertise-
ments, multimedia content, information; essentially to improve the user experience
and increase user engagement. Scenarios also exist where geo-targeting at a given
time period becomes imperative for information exchange within a group or groups
of people, thereby contributing to problems of network congestion and effectiveness.
Emergency scenarios are a quintessential example where people in the affected area
need to be informed and guided throughout the duration of an emergency. To address
this, Wireless Emergency Alert (WEA) is a nation-wide service for broadcasting short
messages∗ (currently 90 characters, similar to SMS messages) to all phones in a desig-
nated geographic area via activation of appropriate cell towers. The area is typically
identified by a polygon as shown in Figure 1, though currently many operators use
rather coarse-grained targeting (such as to a whole county).

In this work we study the compressibility of small polygons in the WEA message.
This would enable a client side mobile application to filter the alert based on the
location of the client, and thereby improve geo-targeting. We have available to us a
corpus of 11,370 WEA messages sent out by the National Weather Service (NWS) [1]†.
The polygons in the NWS corpus range from 4-24 vertices, with a size ranging from
43-331 characters. Since WEA messages are broadcast to thousands of people, and it
is believed that adding a polygon to more precisely define the target area is critical [2],
it is essential to be able to compress typical WEA polygons to fit within the current
message length, and also leave space for text of the alert.

∗https://www.fema.gov/wireless-emergency-alerts
†These messages were sent out by the NWS in 2012, 2013, and 2014



We perform transformations to the original polygon coordinates to get a set of in-
tegers. These transformations are described in Section 3. Our compression technique
Bignum is described in Section 4. We provide a comparative study of our technique
with existing state of the art methods in Section 5.

Figure 1: A map showing 3 polygons (outlined by a yellow border). Actual broadcast
of any alert covers a bigger area than shown by a polygon above.

2 Related Work

The compression problem we are tackling here is quite different from that described
in published research on compression of polygon meshes [3–6] used by graphic appli-
cations. They typically are dealing with a large number of inter-connected polygons
in a 2D or 3D representation of a surface or solid, and thus are compressing a large
number of polygons at the same time. Many of these polygons share common points
and edges, which can be exploited in the compression technique. In our case, we have
a single, relatively small polygon to compress, and so can not amortize items such as
a dictionary of common points.

Numerous integer compression techniques can be applied provided the vertices of
the polygon have been transformed to a set of integers. The very earliest one due
to Golomb [7] is known to be optimal for one-sided geometric distributions of non-
negative integers [8]. A variation in selection of a parameter in Golomb encoding
results in another technique called Rice encoding [9]. Microsoft’s Point Compression
technique [10], used for geographic locations, is also motivated from Golomb. Coding
techniques like Interpolative [11] cannot to applied to our problem since it is necessary
for the ordering of the polygon coordinates to be maintained at the decoding step to
be able to exactly recover the original polygon.

Recent work on integer compression focuses on computation speed and is based
on applying vectorized schemes by exploiting SIMD instructions [12, 13]. For our
problem the main issue is not speed but better lossless compression and to maintain
the ordering of integers. Polygon coordinates, for our purposes, cannot be sorted,
then compressed, and sent over to the client’s mobile for decoding.
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(a) skewness = 1.6; kurtosis = 1.4
dXi ∈ [1, 327]

(b) skewness = 2.1; kurtosis = 5.3
dYi ∈ [1, 325]

(c) skewness = 4.3; kurtosis = 21.2
ΔXi ∈ [1, 361]

(d) skewness = 5.2; kurtosis = 31.6
ΔYi ∈ [1, 524]

Figure 2: Positive skewness in both representations: TΔmin includes dXi(2a) and
dYi(2b); and TΔ includes ΔXi(2c) and ΔYi(2d). Heavy tails and peakedness define
positive kurtosis [14]. Zero value counts are excluded from plots and measurements.

3 Polygon Transformations

In this section we describe the transformations to the original polygon which are
necessary before application of any compression technique. We start with an original
N point polygon, given as an ordered finite sequence in R

2:

O = {X1, Y1, . . . , XN , YN}

where Xi, Yi are GPS coordinates in decimal degrees.
In the NWS corpus, N ∈ [4, 24], even though the NWS standard allows polygons

of up to 100 points. The original uncompressed polygon length of 43 to 331 characters
includes 2N − 1 separating commas, 2N periods and N minus signs. Xi is typically
dd.dd and Yi is typically −dd.dd or −ddd.dd.

We perform transformation steps to the original set of coordinates O. The first
transformation converts all coordinates to a set of positive integers, referred as O′.
Using the set O′ we create two representations of each polygon which will be used as
the input set to the compression algorithms. The two representations are achieved
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(a) dXmin ∈ [167, 3284] (b) dYmin ∈ [456, 9932]

(c) δX1 ∈ [169, 3301] (d) δY1 ∈ [458, 9988]

Figure 3: Ranges for large values in both transformations. TΔmin has
(dXmin, dYmin), and TΔ has (δX1, δY1)

by applying the following transformation rules:

1. Delta Min representation: Find the minimum x-coordinate and y-coordinate
and take the difference with every vertex; the resultant set of integers is denoted
as TΔmin and its elements are {dXmin, dYmin, dX1, dY1, . . . , dXN−1, dYN−1}.

2. Delta representation: Take the difference of consecutive coordinates; the resul-
tant set is denotd as TΔ and its elements are {δX1, δY1,ΔX2,ΔY2, . . . , ΔXN−1,
ΔYN−1}.

Details about both representations can be found in Appendix A.
TΔ (popularly known as differential coding) representation is interesting, since

the distribution (Figure 2) of its ΔXi has a skewed and more peaked shape to that
of the dXi in TΔmin, and also with a heavy tail. Simple transformations shown in
Appendix A already produce a substantial compression because of the limited ranges
and skewed distribution of the delta polygon coordinates (dXi, dYi), and (ΔXi, ΔYi)
and of the starting points (dXmin, dYmin), and (δX1, δY1), shown in Figures 2, 3. It is
important to note that in both representations we have two different sets of integers
to compress, with distinctly different ranges and distributions: the single starting
point pair of dXmin and dYmin for TΔmin (or δX1 and δY1 for T

Δ) and the N−1 pairs
of (dXi, dYi) for T

Δmin (or N − 2 pairs of (ΔXi,ΔYi) for T
Δ).
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4 Bignum Compression

Bignum compression starts by combining each delta pair (dXi, dYi) or (ΔXi,ΔYi)
into a larger single number by the following algebraic expression:

dXYi = dXi ∗M + dYi, (1)

where M can be a fixed choice or chosen based on the specific range of dXi and dYi.
For instance based on our corpus M = 350 will be an appropriate value to “make
space” for dYi because dYi is always less than 350. The intuition behind equation 1
is to left shift bits intelligently such that there is always enough space to squeeze in
dYi. Likewise, we can combine (dXmin, dYmin) or (δX1, δY1) using a larger factor:

dXYmin = dXmin ∗ Yfactor + dYmin , (2)

where Yfactor can be chosen based on the range of dYmin. An appropriate value based
on the corpus is 10, 000 to make space for the dYmin.

Expanding on this combined pair of deltas concept, we can aggregate all deltas
into a single big integer using arbitrary precision integer arithmetic libraries. The big
integer is computed by successive pairing of elements of TΔmin as shown in Figure 4:

dYN−1 + 1 dXN−1 + 1 M . . . dY2 + 1 dX2 + 1 M dY1 + 1 dX1 + 1 M

+ ∗ . . . + ∗ + ∗

BIGΔmin
N + ∗ . . . + ∗ + 0

M2 . . . M2

evaluate from right to left←−−−−−−−−−−−−−−−−−
Figure 4: Sequence of operations for integers in TΔmin to obtain a big integerBIGΔmin

N

In recursive form, the compression technique can be written as:

BIGΔmin
i+1 = (BIGΔmin

i ∗M2) + ((dXi + 1) ∗M) + (dYi + 1), (3)

where i ∈ [1, N − 1], and BIGΔmin
1 is 0. We add one to all dXi and dYi values to

avoid the pathological case when delta values are zero.‡ For the set TΔ we use the
same sequence of steps except that there is one pair less (Figure 5). The recursive
formulation can be written as:

BIGΔ
i+1 = (BIGΔ

i ∗M2) + ((ΔXi + 1) ∗M) + (ΔYi + 1), (4)

where i ∈ [2, N − 1] and BIGΔ
2 is 0.

‡Strictly speaking, only the first value, dX1 could cause a problem.
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ΔYN−1 + 1 ΔXN−1 + 1 M . . . ΔY3 + 1 ΔX3 + 1 M ΔY2 + 1 ΔX2 + 1 M

+ ∗ . . . + ∗ + ∗

BIGΔ
N + ∗ . . . + ∗ + 0

M2 . . . M2

evaluate from right to left←−−−−−−−−−−−−−−−−−
Figure 5: Sequence of operations for integers in TΔ to obtain a big integer BIGΔ

N

Rather than choosing a single value for M for the corpus, we ideally would choose
a separate value for each polygon, defined by:

M = max(sup
i

dXi, sup
i

dYi) + 2§ (5)

Larger values for the starting points in TΔmin and TΔ could also be included in
BIG by choosing an appropriate set of factors based on the distribution, such as
Xfactor = 3500 and Yfactor = 10000 for NWS corpus, and then apply the following:

BIGΔmin
N+1 = (BIGΔmin

N ∗Xfactor + dXmin) ∗ Yfactor + dYmin (6)

BIGΔ
N+1 = (BIGΔ

N ∗Xfactor + δX1) ∗ Yfactor + δY1 (7)

The Xfactor and Yfactor make space for their (dXmin, dYmin) or (δX1, δY1). The resul-
tant big integer, for the purposes of being transmitted in a text message as part of
the WEA is encoded in a string by using a higher base B conversion:

BIG
Δmin

B = M • BIGΔmin
N+1

BIG
Δ

B = M • BIGΔ
N+1

Bullet • is the string concatenation operator. The size of M is fixed to ensure lossless
decoding. Table 1 shows the different transformations using an example polygon from
the NWS corpus.

An estimate of the bounds on BIG can be obtained by noticing that we are essen-
tially placing each dXi and dYi, or ΔXi and ΔYi into an M sized space, essentially
“shifting” by log2(M) bits, concatenating into a big number, and then chopping into
B sized characters (each log2(B) bits). Using two characters to encode M¶, the
approximate length in base B characters is:

len(BIG
Δmin

B ) ≈ 2 +
(log2(Xfactor) + log2(Yfactor) + 2(N − 1)log2(M)

log2(B)
(8)

§Since we add one to all deltas in Eq.3, M has to be strictly greater than all dXi + 1 and dYi + 1
such that we can decode correctly.

¶We actually need just log2M bits for M , but we found that a smaller number of bits, n, to choose
among 2n fixed values of M , yields results almost as good
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Transformation Variable Value

TΔmin O {31.35,-85.42 31.27,-85.82 31.43,-85.85 31.6,-85.42 31.35,-85.42}
O′ {3135,8542,3127,8582,3143,8585,3160,8542,3135,8542}
TΔmin {1527,2542,8,0,0,40,16,43,33,0}
BIGΔmin

N+1 118002304535865272542

BIG
Δmin

70 “hfsEYx0N5(xC”

TΔ O {31.35,-85.42 31.27,-85.82 31.43,-85.85 31.6,-85.42 31.35,-85.42}
O′ {3135,8542,3127,8582,3143,8585,3160,8542,3135,8542}
TΔ {1535,2542,15,80,32,6,34,85}
BIGΔ

N 2954312847725352542

BIG
Δ

70 “1F13Eq4y‘g*g2”

Table 1: Example of compression using Bignum with base B = 70

Compressed length Compression ratio (%)
min. mean max. σ 95th percentile min. mean max. σ 95th percentile

BIG
Δmin

70 9 21.9 61 10 44 11.7 19.0 27.3 2.1 22.4

BIG
Δ

70 9 21 61 10 43 10.4 18.0 25.6 1.8 20.8

Table 2: Results for Bignum in base B = 70 on NWS corpus

len(BIG
Δ

B) ≈ 2 +
(log2(Xfactor) + log2(Yfactor) + 2(N − 2)log2(M)

log2(B)
(9)

Decoding is simply finding the modulus in the reverse order. Specifically, use
dYmin = BIGΔmin

N mod Yfactor; then BIGN−1 = �BIGN/Yfactor�, then repeat using
Xfactor to get dXmin and use M to get all dXis and dYis.

5 Comparison and Discussion

For comparison we will consider bits per integer, the most widely-used metric for
integer compression. To obtain bits per integer for Bignum we sum the number of
bits for BIG and M , and divide the sum by the total number of integers in the
set TΔmin or TΔ. For all experiments X0 = 1600; Y0 = 6000; Xfactor = 3500; and
Yfactor = 10000.

Golomb and Rice coding uses a fixed parameter b to compress a positive integer v
via the quotient �v/b� output in unary coding and the remainder v mod b in binary.
For our experiments with the NWS corpus, we found b = 25 to give the best results.

For comparison with vectorized schemes, we used open source library TurboPFor ‖.
For each TΔ and TΔmin representation we generated a file containing an integer per
line, and ran the benchmarking executable∗∗. We only report the best two techniques
given by the executable i.e. SIMDPackFPF [13] and VSimple [15].

In figure 6b the mean of bits/integer for Bignum is observed to be marginally
less than that of Golomb although the increase in mean value with increase in the

‖https://github.com/powturbo/TurboPFor cloned on October 25, 2015
∗∗executed using: ./icbench <filename>-f1
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(a) Distribution of bits/integer over all
compressed polygons grouped by the number

of integers

(b) Mean bits/integer with error bars for
different compression techniques

Figure 6: Experimental comparison of competitive compression techniques for
TΔmin as input. For each polygon, the number of integers on x-axis is equal to

(#vertices) ∗ 2. Points were displaced marginally to the left and right on the x-axis
to avoid overlapping.

number of integers is similar to that of Golomb. This pattern in mean bits/integer
is not seen in figure 7b; higher integer values for TΔ could be a possible reason.
Also, Figure 7b may convey that Golomb’s performance was better than Bignum,
although a one-to-one comparison of bits/integer showed that Bignum was better in
5839 instances versus 5531 for Golomb. Bignum was better in 10133 instances for
TΔmin representation. Since our primary application is WEA, in table 2 we show the
minimum, mean, maximum, standard deviation (σ) and 95th percentile of lengths and
compression ratio ††in higher base. In terms of character count, TΔ is more efficient
due to an integer pair less.

We also tried other standard string compression algorithms available [16] like 7zip,
and gzip, but the compression was not good enough for useful comparison.

6 Conclusions and Future Work

We presented a simple lossless compression technique for list of integers representing
a small polygon. We also demonstrated the application of small polygons in a nation-
wide emergency service where compression can help target the correct group of people.
Furthermore, we show experimental comparison of our technique with other standard
compression techniques published.

Future work includes exploring use of statistical skew to improve compression,
and a different approach for selection of M . Also, applying Bignum for larger set of
integers.

††compression ratio = compressed length/decompressed length (O)
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(a) Distribution of bits/integer over all
compressed polygons grouped by the number

of integers

(b) Mean bits/integer with error bars for
different compression techniques

Figure 7: Experimental comparison of compression techniques for TΔ as input. For
each polygon, the number of integers on the x-axis is equal to (#vertices− 1) ∗ 2.
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Steps common to TΔmin and TΔ

Step 1: Starting with polygon O, round all numbers to 2 (or 3) decimals precision, convert to
integers to drop the decimal point, and switch sign of Yi, so both Xi and Yi are positive integers, to
produce O′:

Xi = int(100 ∗Xi);Yi = −int(100 ∗ Yi)

Step 2: Drop the last point N which is a duplicate of the first point since these are closed polygons
Steps specific to TΔmin Steps specific to TΔ

Step 3: ComputeXmin = infi Xi, Ymin = infi Yi. Step 3: Compute deltas for coordinates where
i ∈ [1, N − 2]:

ΔXi+1 = Xi+1 −Xi

ΔYi+1 = Yi+1 − Yi

Step 4: Compute deltas for coordinates such that
i ∈ [1, N − 1]:

dXi = Xi −Xmin

dYi = Yi − Ymin

, where dXi and dYi are non-negative integers.

Step 4: Compute deltas for X1 and Y1 from a the
chosen “origin”, (X0, Y0) = (1600, 6000) :

δX1 = X1 −X0

δY1 = Y1 − Y0

Step 5: Compute deltas for Xmin and Ymin from
a chosen “origin”, origin (X0, Y0):

dXmin = Xmin −X0

dYmin = Ymin − Y0

We found (1600, 6000) most effective (see Figures
3a and 3b).

Step 5: Many of the Δs are negative integers
which causes problems for the compression tech-
niques discussed below. Therefore, every ΔXi or
ΔYi element e will be converted as follows:

e =

{
2e, if e >= 0

−2e− 1, if e < 0

Resultant set:

TΔmin = {dXmin, dYmin, dX1, dY1,

. . . , dXN−1, dYN−1}

Resultant set:

TΔ = {δX1, δY1,ΔX2,ΔY2,

. . . , ΔXN−1,ΔYN−1}

Table 3: Transformation steps applied to get two set of integer representations for each
polygon. Both representations are provided as input to all compression techniques.
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